Top Dilepton Cross-Section Measurement -Full Status Report-

Mircea N. Coca for

Ricardo Eusebi, David Goldstein, Eva Halkiadakis, Andy Hocker, Andrew I vanov, Carla Pilcher, Charles Plager, David Saltzberg, Monica Tecchio, Paul Tipton with Top Dilepton Working Group

Overview

- Review of the Analysis
- Changes from the LP'2003 Blessed Measurement
- Signal Acceptance and Backgrounds
- Systematic Uncertainties
- Candidate Events
- New Cross Section Result
- Future Plans

Documentation

Related CDF Notes:

CDF6830- "Measurement of the tt xsection with dileptons" - new

CDF6590- "Acceptance and Background Systematics" **-updated**CDF6742- "A 2nd Determination of the Fake Background" **- updated**

CDF6517- "Adding CMI O muons to the Top Dilepton xsection"

CDF6579- "Optimization studies for the Top Dilepton xsection"

CDF6591- "Determination of DY background-Summer'03"

CDF6592- "Fake Lepton Backgrounds for the Summer'03"

CDF6588- "A measurement of the tt xsection – Summer'03 "

- Q&A web page in place
- Previous talks at this meeting
 - Andy Hocker, "Dilepton Cross Section Update", 08-JAN-2004
- Many updates at Dilepton meetings (see WebTalks)

History of the analysis

- We started in Fall'02
 - blessed the measurement with 72 pb⁻¹ in Spring'03 using tight-tight dilepton categories
- Performed various optimizations
 - doubled the acceptance for LP'03 blessed result
- This is the third iteration
 - incorporating the lessons from the previous two
 - use the full dataset available until September 2003 shutdown

Top Dilepton Topology

- 2 high-E_T, leptons (e, μ)
 - Sensitive only to leptonic decays of taus
 - Loose nonisolated leptons allowed
- Large missing energy E_T
 - Corrected for muons and tight L5 jets
- Z-mass region for same-flavour events
 - special treatment
- At least 2 jets with large E_T
 - Cone algorithm 0.4
 - Corrected E_T to L5, $|\eta|$ < 2.5
- Large transverse energy flow $H_T = \Sigma(E_T^{leptons}, E_T^{jets}, MET)$

Changes from Summer'03

- Revisited the lepton categories (See Andy's Talk)
 - Excluded Non-PHX PEMs
 - Big bckgr source: half the fakes, 20% of total bckgr
 - Contributes about 5% to top acceptance
 - Excluded Plug-Plug categories
 - < 2% of top acceptance
 - Come in on MET_PEM trigger, which makes any datadriven DY determination very hard
- Cut on COT exit radius for CMX muons
- PHX |η| < 2.0 to reduce the charge fake
 - (Summer'03: $|\eta| < 2.5$)
- Updated the scale factors, trigger and reconstruction efficiencies

Event Selection

- \geq 2 leptons, $p_T > 20 \text{ GeV}$
 - At least one of which is TIGHT (CEM, CMUP, CMX or PHX)
 - At most one central lepton (except CMIO) can be nonisolated
- ≥ 2 jets, L5 corrected, E_T > 15 GeV
- MET > 25 GeV (corrected for muons, jets)
 - If MET < 50 GeV, $\Delta \phi$ (MET, nearest I or j) > 20 deg
- If 76 GeV < M_{II} < 106 GeV and same-flavor,
 - jetSig > 8 (jetSig=MET/sqrt(Σ jet E_T projected on MET))
 - $\Delta \phi$ (MET, nearest I or j) > 10 deg
- $H_T > 200 \text{ GeV } (H_T = \Sigma (\text{leps, jets, met}))$
- Opposite charge

Dilepton categories

ee category	Trigger required	
CEM-CEM (1 can be NI)	CEM_18	
CEM-PHX (CEM can be NI)	CEM_18	

em category	Trigger required
CEM-CMUP (1 can be NI)	CEM_18 CMUP_18
CEM-CMI O/U/P (U/P can be NI)	CEM_18
CEM-CMX (1 can be NI)	CEM_18 CMX_18
PHX-CMUP (CMUP can be NI)	CMUP_18
PHX-CMX (CMX can be NI)	CMX_18
PHX-CMI O/U/P (U/P can be NI)	MET_PEM

mm category	Trigger required
CMUP-CMUP (1 can be NI)	CMUP_18
CMUP-CMI O/U/P (U/P can be NI)	CMUP_18
CMX-CMUP (1 can be NI)	CMX_18 CMUP_18
CMX-CMI O/U/P (U/P can be NI)	CMX_18
CMX-CMX (1 can be NI)	CMX_18

Signal Acceptance

- Use PYTHIA ttopei sample
- Only HEPG dilepton events in numerator
 - tt l+j treated as fakes!
- New:
 - only events with OBSV $|z_v|$ < 60 cm in numerator and denominator
 - $-|z_0|$ < 60 cm cut effic. (0.95) from data (CDF 6660)
- "Raw" acceptance:

$$\varepsilon_{raw} = (0.78 \pm 0.009) \%$$

-uncertainty in statistical only

Backgrounds - Overview

- Main sources of backgrounds:
 - Fakes
 - Mainly W+≥3jets, one jet faking a lepton
 - Estimated entirely from data
 - A second technique developed (CDF6592), many checks
 - Reduced by ~60% after the exclusion of PEM leptons
 - Diboson (WW/WZ)
 - Estimated using Monte Carlo
 - Drell-Yan
 - Estimated using Data/MC
 - Normalizations from data
 - Larger MC samples available

Fakes Background

- Used a second method to reduce the systematic uncertainty
- Instead of fake rate per jet, determine fake rate per CdfEmObject and per min-I track
- Fake rate parametrized in bins of E_⊤ and iso
 - Improves predicted-vs.-observed results,
 - Results in larger stat errors on fake rates
- Method documented in CDF 6742
 - Results were consistent with CDF 6592 (LP '03 method)

Fake rates cross-checks

- We use fake rate from JET50
- Apply them to other jet samples
 - JET20, JET70,
 JET100, b enriched
- Good agreement between predictions and observed fakes
- Non-isolated leptons also show good agreement

	pred	
J20	37 +/- 7	34 +/- 6
J70	74 +/- 40	63 +/- 8
J100	63 +/- 190	67 +/- 8
8 GeV μ	27 +/- 7	31 +/- 6
w/ secvtx	3 +/- 2	5 +/- 2

NMUO

NCEM

	pred	obs
J20	74 +/- 21	72 +/- 8
J70	102 +/- 55	88 +/- 9
J100	150 +/- 300	100 +/- 10
8 GeV e	0 +/- 3	1 +/- 1
w/secvtx	0 +/- 0.5	0

Isolated leptons cross-checks

Few isolated categories

$$LMU = \{CMU, CMP, CMIO\}$$
PHX

	Pred	obs
J20	53 +/- 8	51 +/- 7
J70	60 +/- 11	75 +/- 9
J100	82 +/- 53	68 +/- 8
8 GeV μ	9 +/- 1	17 +/- 4
w/ secvtx	.7 +/1	2 +/- 1

LMUO

	Pred	obs
J20	42 +/- 26	18 +/- 4
J70	36 +/- 12	21 +/ 5
J100	88 +/- 25 50 +/-	
8 GeV e	6.5 +/- 4	1 +/- 1
w/ secvtx	.4 +/5	0

SS test of fakes:

	0 jet	1 jet	2 jet
SS predicted	2.3+/- 0.5	1.8+/-0.4	0.9+/-0.2
SS observed	3	2	0

Drell Yan Background

- Basic idea behind previous iteration's method (CDF6591) used in the Summer03:
 - Scale MC MET tail to data in each jet bin
 - Suffers from poor data statistics per jet bin
 - Now we have smaller eta acceptance for the plug and the data statistics becomes even poorer
 - Only 32% of DY comes from CC categories
- Use an approach similar with lepton+track:
 - Look at data MET tail in all jet bins
 - Use MC to tell you how to distribute data across jet bins

DY background method 1

Use data:

- To measure the number of Z's inside the mass window
 - N_{MFT} (after MET > 25)
 - N_{zveto} (after MET> 25 and Zveto cuts)
 - Subtract contribution from other processes
- Next use Monte Carlo:
 - to distribute the events in jets bins
 - N_0/N_{tot} , N_1/N_{tot} , $N_{\geq 2}/N_{tot}$
 - to move outside the mass window
 - R^j_{o/i} = ratio of outside/inside for jet bin j
 - to calculate H_t cut efficiency (mass dependent)
 - I nside the mass window
 - Outside the mass window

DY background method 2

- We estimate DY in each jet bin j, where j=0,1, ≥2
- We want to check our predictions on 0 and 1 jet bin

Drell Yan:Ro/i

Drell Yan: N jet ratios

Drell Yan: N_{MET} and N_{Zveto}

 Dominant uncertainty is due to limited number of Z's after MET and Zveto cuts

Data validation

We looked at electron and muon yields over time Z's,
 W's in central region (Eva H., M. Tecchio)

 PHX W xsec from plug dataset was checked for LP03 (2.4 nb, see CDF 6588)- plan to check it again

Z cross sections

- Full cross sections
 - the latest scale factors
 - version 4 DQM good run list (162 pb⁻¹)
 - for details see CDF 6830
- Results:
 - Z → ee (CEM-CEM): 235 +/- 15 pb
 - Z → ee (CEM-PHX): 231 +/- 15 pb
 - NNLO: 252 +/- 8.8 pb

Datasets used

- High-P_T lepton datasets, 4.11.1 REMAKE
- Plug dataset (bpel08/09), stripped on L3 MET_PEM, 4.11.1 "REMAKE"
- PES alignment corrections done when ntuplizing data
- Use DQM GRL v4
 - Bad CSL and SVX beamline runs excluded by hand
- We use 4 good runs and luminosities:

- CEM/CMUP: 193 pb⁻¹

- CEM/CMUP and CMX: 175 pb⁻¹

- CEM/CMUP and Si: 162 pb⁻¹

- CEM/CMUP and Si and CMX: 150 pb⁻¹

Systematics: Signal Acceptance

- Jet Energy Scale shift jet correction by ± 1σ and take half-difference in acceptance
- ISR take half the difference in acceptance for samples with/without ISR
- FSR use a different underlying event tunning (tune B)
- PDF effect on acceptance due to:
 - Different PDF functions (MRST vs CTEQ6M)
 - Different α_s
 - $\pm 1\sigma$ fit parameters within CTEQ6M
- MC generators compare Herwig with Pythia

Id efficiency SF uncertainty

- There are few possible options we are considering
- Id vs jet bins approach → out of statistics in ≥2 jets
 - Use inclusive SF and assign an uncertainty that covers
 ≥2 jets bin
 - Use SF for each bin with its uncertainty
- Fold in the id vs iso distribution
 - Most of electrons are very isolated
- Fold in the id eff vs ΔR(electron, closest jet)
 - Again dilepton events are not as jetty as lepton+jets and the overall uncertainty due to id eff smaller
 - I+jets SLT b-tagging analysis: 5%

Systematics - Signal Acceptance

- Same methodology as for Summer'03
- Uncertainties re-evaluated (CDF 6590)

Source	Uncertainty (%)
Lepton I D SF + Trig. Effic.	2.0 *
Jet Energy Scale	4.7
ISR/FSR	1.7
PDF's	11.6
MC Generators (Pythia vs Herwig)	5.5
Total	14

Systematics: Backgrounds

Fakes

 largest difference between the fake background using JET50 fake rates and JET20, JET70 or JET100

Diboson

- compare Pythia with Alpgen
- Jet Energy Scale (WW/Z→ττ)
 - shift jet correction by $\pm\,1\sigma$ and take half-difference in acceptance

Drell-Yan

- changing the energy scale up/down \pm 1 σ we derive a systematic uncertainty on H_t cut
- 2 jet scale factor uncertainty

Systematic Uncertainties: Backgrounds

Background	Source	Uncertainty
		(%)
Z ? tt	2-jet efficiency	10
	Jet energy scale	29
WW/WZ	MC Generator	40
	Jet energy scale	18
DY (ee, mm)	Method	98
	Jet energy scale (H _t)	20
Fakes	Method	32
	Different Jet Samples	8

Background check: 0, 1 jet bins

 Cross-check our background predictions in regions with no top signal

	N jets		
Source	0j	1j	
ww/wz	12.4 ± 5.4	3.3 ± 1.4	
Drell-Yan	4.4 ± 2.0 2.2 ± 1.1		
$Z \rightarrow \tau \tau$	0.20 ± 0.06	0.87 ± 0.25	
Fakes	5.53 ± 1.14	4.35 ± 0.90	
Total Background	22.5 ± 5.90	10.7 ± 2.1	
$t\bar{t}$ ($\sigma = 6.7 \text{ pb}$)	0.1 ± 0.0	1.4 ± 0.2	
Total SM expectation	22.6 ± 5.90	12.1 ± 2.9	
Run II data	19	11	

Signal region

• We measure the cross-section after H_T & OS

	N jets			
Source	0j	1j	≥ 2j	H_T , OS
WW/WZ	12.4 ± 5.4	3.3 ± 1.4	0.83 ± 0.36	0.50 ± 0.22
Drell-Yan	4.4 ± 2.0	2.2 ± 1.1	0.7 ± 0.4	0.44 ± 0.44
$Z \rightarrow \tau \tau$	0.20 ± 0.06	0.87 ± 0.25	0.69 ± 0.20	0.43 ± 0.12
Fakes	5.53 ± 1.14	4.35 ± 0.90	2.47 ± 0.52	1.07 ± 0.35
Total Background	22.5 ± 5.90	10.7 ± 2.1	4.7 ± 1.8	2.4 ± 0.7
$t\bar{t}$ ($\sigma = 6.7 \text{ pb}$)	0.1 ± 0.0	1.4 ± 0.2	8.8 ± 1.2	8.3 ± 1.2
Total SM expectation	22.6 ± 5.90	12.1 ± 2.9	13.5 ± 2.1	10.7 ± 1.4
Run II data	19	11	14	13

Results per dilepton category

	Events per 193 pb^{-1} after all cuts			
Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$
WW/WZ	0.15 ± 0.07	0.12 ± 0.05	0.22 ± 0.10	0.50 ± 0.22
Drell-Yan	0.35 ± 0.28	0.09 ± 0.34	-	0.44 ± 0.44
$Z \to \tau \tau$	0.09 ± 0.03	0.11 ± 0.03	0.23 ± 0.07	0.43 ± 0.12
Fakes	0.30 ± 0.10	0.15 ± 0.05	0.62 ± 0.22	1.07 ± 0.35
Total Background	0.9 ± 0.3	0.5 ± 0.4	1.1 ± 0.3	2.4 ± 0.7
$t\bar{t} \ (\sigma = 6.7 \text{ pb})$	1.9 ± 0.3	1.8 ± 0.3	4.5 ± 0.6	8.3 ± 1.2
Total SM expectation	2.8 ± 0.5	2.3 ± 0.6	5.6 ± 1.0	10.7 ± 1.4
Run II data	1	3	9	13

Data Candidates

10 candidates:

– ee: 1 events

– eμ: 9 events

 $-\mu\mu$: 3 events

Only one has a nonisolated lepton <u>ee</u>

TCE/TCE

mm

CMUP/CMP

CMUP/CMX

CMX/CMX

<u>eμ</u>

CMUP/NITCE

TCE/CMUP

TCE/CMP

TCE/CMU

TCE/CMX

TCE/CMX

TCE/CMX

TCE/CMIO

PHX/CMUP

Cross Section

$$\mathbf{S}(t \ t) = \frac{N_{obs} - N_{back}}{\mathbf{e} \times A \times \int L dt}$$
$$\mathbf{e} \times A \times \int L dt = (1.23 \pm 0.17) pb^{-1}$$

Winter'04 Preliminary:

$$\mathbf{s}_{t\bar{t}} = 8.6 \pm 2.9(stat) \pm 1.6(syst) \pm 0.5(lum) pb$$

• Theoretical prediction: $\sigma = (6.7 + / - 0.5) \text{ pb}$

Njet plot – backgrounds only

Njet plot – BG+SIGNAL (6.7 pb)

Njet plot – BG+SIGNAL (8.6 pb)

Conclusion

- We have measured the ttbar dilepton cross-section with 193 pb⁻¹
- Our analysis has a high purity: S/B = 4
- Preblessing next week
- To do:
 - Cross-checks will be performed till next week
 - PR Plots
- Other analyses are waiting to further use this data sample (top mass, kinematic tests)
- Move toward publication next

